首页> 外文OA文献 >Saliency Detection combining Multi-layer Integration algorithm with background prior and energy function
【2h】

Saliency Detection combining Multi-layer Integration algorithm with background prior and energy function

机译:结合多层积分算法的显着性检测   背景先验和能量函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose an improved mechanism for saliency detection.Firstly,based on a neoteric background prior selecting four corners of an imageas background,we use color and spatial contrast with each superpixel to obtaina salinecy map(CBP). Inspired by reverse-measurement methods to improve theaccuracy of measurement in Engineering,we employ the Objectness labels asforeground prior based on part of information of CBP to construct amap(OFP).Further,an original energy function is applied to optimize both ofthem respectively and a single-layer saliency map(SLP)is formed by merging theabove twos.Finally,to deal with the scale problem,we obtain our multi-layermap(MLP) by presenting an integration algorithm to take advantage of multiplesaliency maps. Quantitative and qualitative experiments on three datasetsdemonstrate that our method performs favorably against the state-of-the-artalgorithm.
机译:在本文中,我们提出了一种改进的显着性检测机制。首先,基于现代背景,先选择图像的四个角作为背景,然后利用每个超像素的颜色和空间对比度获得盐度图(CBP)。受到反向测量方法的启发,以提高工程测量的准确性,我们基于CBP的部分信息将前景优先标签应用于前景,以构造amap(OFP)。此外,分别使用原始能量函数分别优化了它们和最后,为了解决比例尺问题,我们提出了一种利用多重显着图的集成算法来获得多层图(MLP)。在三个数据集上进行的定性和定量实验表明,我们的方法在处理现有算法方面表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号